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A review of residual distribution methods for compressible fluid dynamics
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In this talk, I will review the current status of the so-called residual distribution schemes
applied, in particular, to compressible fluid dynamics problems. Other physical models
include the Shallow Water equation and generalization, MHD, etc

This schemes, after the early work of R. Ni at Bombardier, and the seminal work of P.L Roe,
in particular his 1981 JCP paper and its extensions to scalar multidimensional schemes, can be
considered as finite element methods of the streamline diffusion type. The emphasis is put in
non-oscillatory properties, in order to be able to compute flow discontinuities, so that they are
non linear by construction. Indeed shock capturing is done in a totally different manner as for
stream line diffusion, allowing for a class of parameter free schemes. In a way, the Residual
Distribution methods can be seen as a kind of compromise between high order TVD-like
finite difference/finite volume schemes and classical finite element methods, in that they
borrow ideas from both communities : geometrical flexibility, the residual concept on one
side, and non oscillatory, maximum principle on the other one.

In the talk, we will first consider the case of steady scalar hyperbolic problems, showing how
one can systematically construct parameter free essentially non-oscillatory schemes. Then we
will move towards steady advection diffusion problems, showing how uniform accuracy,
whatever the Peclet/Reynolds number is. The last part of the talk will consider recent work on
unsteady problems. Examples of compressible flows (laminar and turbulent) will be also
shown, in order to demonstrate the efficiency of the method, both in accuracy, memory foot
print and CPU time.
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